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We apply equilibrium and nonequilibrium molecular dynamics simulations to study the dynamic properties
of electrolytes in nanopores. The realistic primitive model and the restrictive primitive model widely used in
the statistical mechanics of liquid-state theory are applied to model the electrolytes. The electrolytic ions are
immersed in water, treated in this work as either a dielectric continuum ignoring the size of solvent molecules
or a macroscopic dielectric continuum(polar property) plus neutral soft spheres, and the aqueous electrolyte is
put in a confined space. To simulate a condition mimicking closely processes of practical interest and yet
maintaining the simulation computationally manageable, we consider an infinitely long and uncharged cylin-
drical tube. The equilibrium property of the self-diffusion coefficentD and the nonequilibrium property of
electric conductivitys are computed in terms of electrolyte concentration, particle size, and cylindrical pore
radius. The simulation results for the continuum solvent restrictive primitive model and continuum solvent
primitive model show normal behavior forD versus pore radiusR at ionic concentration 0.1M—i.e., D
decreases with decreasingR—display anR independence ofD at a certain threshold concentration and undergo
an anomalous increase inD with reducingR at a lower value 0.025M. The mechanism of the anomaly at the
ionic concentration 0.025M was sought for and interpreted in this work to arise from the energetic and entropic
factors. Our simulated data ofs at this same concentration follow the same trend asD. To delve further into
the transport properties, we perform simulation studies for the discrete solvent primitive model and make a
detailed analysis of the characteristic of the ion radial density functions. Comparison of the latter functions
with those in the continuum solvent primitive model sheds light on the simulated diffusion coefficient within
the context of discrete solvent primitive model which is about two orders of magnitude less. This difference in
D is naturally attributed to the solvent effect. Similar disparities were reported by others for the discrete and
continuum restrictive primitive models.
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I. INTRODUCTION

Electrolytes in a confined space, nanopores in particular,
resemble many physical systems encountered in our daily
life. Recently, studies of this spatially restricted system have
attracted a great deal of attention, both experimentally and
theoretically. One possible impetus for the intensified re-
search activities may be due to the marvellous discovery of
the crystal structure of bacterial potassium channels[1]. The
latter can serve as a prototype example in studies of the
structures of voltage-gated channels. In this regard, ion chan-
nels belong to one of these many systems. The understanding
of ions in a confined geometry in a state of either equilibrium
or nonequilibrium is important in biological processes. Well
known cases are the numerical studies of biological channels
which have demonstrated specific ion selectivity phenom-
enon, but the same energetic consideration is found to be
intact for simulations of ionic flow in the aqueous baths out-
side the channels. The high rate of ionic transport is thus a
distinct feature observed in pores. In the area of material
science and a somewhat closely related area, electrochemis-
try, interest in the properties of confined electrolytes has been

directed to finding an optimized performance of fuel cells
that depend on Nafion membranes and porous electrodes.

During the past two decades, computer simulations have
been used to study the static and dynamic properties of mol-
ecules or ions in porous media[2–7]. These simulation stud-
ies are mainly devoted to an understanding of the equilib-
rium properties of the structures of channels and of the
energetic and dynamics of aqueous dilute electrolytes in
them. In most simulation studies, such as the electrolytes
adsorption, the ions are treated within the primitive model
(PM) and the solvent is approximated by a continuum dielec-
tric constant background. The papers of Rivera and Sorenson
[8], Lee and Chan[9], Bodaet al. [10], and Hribaret al. [11]
are a few representatives of these recent works. In addition,
simulations of electrolytes in nanopores that aim at a more
realistic molecular model of solvent, the so-called discrete
solvent restrictive primitive model, have been proposed also.
[12,13] Concurrently, there are other simulation attempts
[4–7] that give proper attention to the behavior of molecules
in molecular sieves. Here effort is directed to classify the
diffusion modes into normal(or tracer) and single-file diffu-
sions. This kind of simulation studies of molecular diffusion
can shed considerable light on the underlying mechanism of
phase separation for particles in restricted space[6]. While
these simulation works have uncovered such anomalies as
the charge non-neutrality[9], salt exclusion[14], selective*Corresponding author.

PHYSICAL REVIEW E 69, 051203(2004)

1539-3755/2004/69(5)/051203(12)/$22.50 ©2004 The American Physical Society69 051203-1



adsorption[12], attractive double-layer forces[10], dual-
mode diffusion[6], etc., relatively fewer works are reported
for the transport properties of confined electrolytes despite
the fact that they are of greater industrial importance.

Transport properties of electrolytes in restricted space
have been motivated greatly by experiments. Steck and Yea-
ger [15] and Gavachet al. [16] carried out one of the early
conductivity experiments in perfluorosulfonic acid mem-
branes by means of an ac impedance method. Lack of a
definitive measurement of membrane pore sizes and the poor
characterization of the membrane structure have made the
interpretation of electric conductivity results extremely diffi-
cult. Electrical conductivity measurements with various elec-
trolytes in track-etched mica membranes and the conduc-
tance through a single submicrometer diameter pore using a
scanning ion-conductance microscope have been reported by
Westerman-Clark and Anderson[17] and Hansmaet al. [18],
respectively. We should perhaps mention the patch-clamp
technique which has been widely applied to determine the
current-voltage characteristics of various biological channels
in different electrolytic environment[19]. Since the afore-
mentioned techniques are generally difficult for pores of a
few nanometers, there remain ambiguities in the interpreta-
tion of experimental data obtained. Under this circumstance,
the molecular dynamics(MD) method is an indispensable
tool for it can stretch into the regime inaccessible to experi-
ments. Lynden-Bell and Rasaiah[20] performed an equilib-
rium MD simulation for a sample comprising one solute
molecule and water molecules in an infinite cylindrical pore
with smooth repulsive walls. The solvent is treated there as
pointlike molecules(the SPC/E model) and channels of vari-
ous sizes are assumed uncharged. In the following years,
equilibrium MD (EMD) simulations were applied[21,22] to
study more realistic biological ion channels. While it is pos-
sible, in principle, to perform a long-time simulation and
compare the results with, say, the patch-clamp experimental
data, in practice it is still numerically tedious to do long-time
MD simulation for atomic channels.

For the study ofD ands of interest here, we may, how-
ever, proceed as follows. First, we apply the EMD simulation
to obtain short-time diffusion coefficients. Using the latter,
we predict the current in a nonequilibrium situation within
the context of the Nernst-Planck theory of ionic flux and
determine the ionic conductivity by the Nernst-Einstein
theory [23,24]. Then we carry out a nonequilibrium MD
(NEMD) simulation and check the results against the EMD-
projected conductivity based on the Nernst-Einstein theory.
With this strategy in mind, our plan in this work is to apply
the EMD and NEMD simulations to electrolytes and study
the mobility of ions in an infinitely long, uncharged cylindri-
cal nanopore within which contains the solvent which is
modeled as(i) a continuum dielectric constant ignoring the
size of ions and(ii ) a continuum dielectric constant simulat-
ing the polar property plus a collection of neutral soft
spheres reflecting its molecular nature. Differing from our
preceding works[13,25] where we used the restrictive primi-
tive model and fixed the electrolytic concentration at 0.1M,
we consider here different sizes for the sodium and chlorine
ions (the realistic primitive model) and extend the simulation
to lower electrolytic concentrations. The due consideration of

size disparity for cations and anions is reminiscent of the
normal, single-file, and dual-mode diffusions numerically
predicted for a binary adsorbate mixture in AlPO4-5. These
simulation studies of molecular diffusion were motivated
mainly by experiments[5,26–28] reported to have observed
either normal or single-file diffusion for the single adsorbed
species in AlPO4−5 zeolite. These diffusion behaviors were
interpreted recently by Sholl and Fichthorn[6] who proposed
a generalized geometric criterion. It would be instructive to
see the bearing of this criterion against our realistic primitive
model. We found thatD decreases with decreasing pore ra-
dius at ionic concentration 0.1M, displays a nearR indepen-
dence ofD at a certain threshold concentration and shows an
anomalous increment with decreasingR at concentration
0.025M. The simulateds carried out at the electrolytic con-
centration 0.025M is consistent with thisD anomaly. To be
explained below, we attribute this anomaly to competitive
contributions between the energetic and entropic factors.

II. MOLECULAR DYNAMICS SIMULATION

In this section, we present details of the EMD and NEMD
simulations applied to study dynamic properties of electro-
lytes in confined space.

A. Interparticle potential

In both the equilibrium and nonequilibrium MD simula-
tions, we need, first of all, an interparticle potential function.
To construct this function generally and to set up the simu-
lation environment, we proceed as follows. First, themolecu-
lar behavior of the solvent is approximated by a system of
neutral soft spheres and its polar property, comprising the
molecular multipoles and hydrogen bonding, is reflected in
the reduction of the interactions between ions by a factor
1/«r where «r is a dielectric constant simulating amacro-
scopiccontinuum background. We use the primitive model
for electrolytic ions, but treat their short-range interaction as
soft cores. The ion-ion, ion-solvent, and solvent-solvent in-
teractions are modeled separately by a soft core Week-
Chandler-Anderson potential given by

ulm
softsr ijd = HuLJsr ijd + elm, r ij ø rminslmd,

0 otherwise,
s1d

where

uLJsr ijd = 4elmFSdlm

r ij
D12

− Sdlm

r ij
D6G s2d

is the Lennard-Jones(LJ) potential. Thel or m in Eq. (1)
denotes anion, cation, or solvent,elm and dlm are the LJ
energy and the soft-sphere diameter parameters of the
particle-particle(which can be anion-anion, cation-cation,
anion-cation, anion- or cation-solvent, or solvent-solvent),
and rminslmd=21/6dlm is the location of the minimum of the
untruncated LJ potential. To account for the long-range Cou-
lomb tail of ions, we correct the soft-core part by the elec-
trostatic interaction in a continuum solvent as
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ulm
C sr ijd =

qiqj

4pe0«rr ij
. s3d

Here qi is the charge of theith ion ande0 is the dielectric
permittivity of the vacuum. In this work, we consider two
specific cases of interest for the interaction potential. The
first case only accounts for the soft-core interactions among
ions ignoring those counterparts of the solvent molecules.
The total interaction potential is

ulm
CPM = ũlm

soft + ulm
C , s4d

whereũlm
soft is ulm

soft with the indexl or m takes ononly anions
or cations. We refer to Eq.(4) as thecontinuumsolvent ap-
proximation. For the second case, the long-range interactions
between anions and cations are again given by Eq.(3), but,
in addition, the cation-solvent, anion-solvent, and solvent-
solvent interactions are assumed to take on the same poten-
tial form as Eq.(1). Within this so-calleddiscretesolvent
primitive model(DSPM), we have

ulm
DPM = ulm

soft + ulm
C . s5d

Note that the indexl or m in ulm
soft now runs over the anion,

cation, or neutral solvent molecule and in contrast toulm
C

where thel or m takes on an anion or cation only. Equations
(1)–(5) are basic functions to be used in the MD simulation
below. To proceed to numerical simulation, we place all the
particles inside a cylindrical cell of radiusR and lengthH
(Fig. 1). A periodic boundary condition is applied along the
axial direction denoted byz. Now the confinement of par-
ticles within the cylindrical cell means that we need to ac-
count for the ion/solvent-wall interactions. For an uncharged
channel, we use the analytical formula derived previously by
Tjatjopoulouset al. [29] In their work Tjatjopoulouset al.
considered micropores of a circular as well as a polygonal
cross sections. In the present work, only the cylindrical chan-
nel is studied. Explicitly, the particle-wall potential is given
by

ulwsr id = HuLJ,lwsr id + uLJ,lw„rminslwd…, r i ù rminslwd,

0, otherwise,

s6d

in which

uLJ,lwsr id = nwelwp2S63

32

F„− 9/2,− 9/2,1;sr i/Rd2
…

sR/dlw − r i/dlwd10fsR+ r id/Rg10

−
3F„− 3/2,− 3/2,1;sr i/R…

2d
sR/dlw − r i/dlwd4fsR+ r id/Rg4D s7d

is the shifted LJ-type wall potential. In the above,nw is the
reduced surface number density of the wall,dlw andelw are
the distance and energy parameters for the particle-wall in-
teraction,r i is the radial distance of theith particle from the
center of the cylinder,rminslwd is the location of the mini-
mum of the LJ particle-wall potential(unless specified, the
word “particle” is hereafter referred to generally as anions,
cations, or solvent molecules), andFsa,b,c;xd is the hyper-
geometric function. Note that we assume the dielectric prop-
erties of the wall and outside are the same as the solvent in
appealing to Eq.(6) for the particle-wall interaction. Such a
judicious assumption avoids the complication to account for
the boundary condition arising from different dielectric me-
dia. Given Eqs.(1)–(6) for the particle interaction potential,
both EMD and NEMD simulations can be carried out if the
particle LJ parameters are available. In this work, we have
adopted the same set of LJ parameters previously used by
Spohr[30] and more recently by Crozieret al. [31] to model
the electrolyte Na+, Cl−, and water molecules. As for the
particle-wall LJ parameters, they are calculated according to
the Lorentz-Berthelot rule.[32] We record all these LJ pa-
rameters in Table I.

B. Equilibrium MD simulation

We shall useNVT ensemble in our EMD simulation. The
system, confined within volumeV, consists ofN particles,
which is the total number of either anions, cations, and sol-
vent molecules for thediscretesolvent primitive model or
only anions plus cations for thecontinuumsolvent primitive
model. These particles are thermally maintained at room
temperature, which is technically fixed by the Gaussian ther-

TABLE I. Lennard-Jones distance and energy parameters for the
restrictive primitive modelssNa+,Na−d and sCl+,Cl−d, primitive
modelsNa+,Cl−d, ion-solvent and ion-wall interactions. The solvent
when treated on a molecular level is characterized by oxygen O.
The ion-wall sWd Lennard-Jones parameters are calculated by the
Lorentz-Berthelot rule.

lm dlm s10−10 md elms10−23 Jd

Na-Na 2.73 59.37

Cl-Cl 4.86 27.87

Na-Cl 3.87 28.32

O-O 3.169 107.95

Na-O 2.876 86.6

Cl-O 3.25 86.6

W-W 3.87 28.32

Na-W 3.30 41.00

Cl-W 4.37 28.09

O-W 3.52 55.29

FIG. 1. Schematic figure for the cylindrical cell with periodic
boundary condition in the axial direction. Different sizes for anions
and cations emphasize the realistic primitive model.
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mostat[33]. The axial self-diffusion coefficient of thel-type
species of particles,Dl, was calculated according to the Ein-
stein formula(dropping the index for particles)

Dl =
1

2
lim
t→`

kuzlstd − zls0du2l/t, s8d

where the bracketsk¯l denote the ensemble average of the
mean-square axial displacement of thel-type species.
Strictly speaking, mutual diffusion coefficients should be
considered especially in the DSPM which consists of a mix-
ture of three different species. MacElroy and Suh[34] have
proposed a means to compute the diffusion coefficients in a
mixture and relate them to individual fluxes. Since the con-
centration of ions of interest heresø0.1Md is dilute, we may
comfortably apply Eq.(8) only and use it to compute the
self-diffusion coefficient of ions. At this point, we should
mention several technical details used in the simulation.
First, the equations of motion that yield the positions of par-
ticles were here solved numerically by the modified Verlet
algorithm [35]. Since the particles are restricted to move in
an infinite cylindrical cell, the method of the periodic bound-
ary condition along thez axis is imposed. The methodology
proposed by Rapaport[36] is sufficient for this purpose. Sec-
ond, for convenience in simulation, we adopt reduced units.
In terms of massml, distance parameterdlm, and energy
parameterelm, the reduced units are defined for temperature
T* =kBT/elu, time step t* =tfelm / smldlm

2 dg1/2, density r*

=sN/Vddlm
3 , and finally self-diffusion coefficient D*

=D / selmdlm
2 /mld1/2. For convenience in conversion, we give

in Table II details of these reduced quantities applied to cases
of interest.

C. Nonequilibrium MD simulations

For NEMD, we study the transport property of an electro-
lyte in a nanotube focusing in particular the electric flow of
ions. Instead of using the dual-control-volume grand canoni-
cal MD [37] technique supposedly more suit to studying the
mobility of ions, here we follow Tanget al. [25] and others
[38], adopting the method of an electric potential gradient.
This approach has the advantage of easy implementation and
computationally it requires lesser amount of computing time
in comparison with the former method. The electric potential
gradient method, as the name indicates, amounts to applying
(axially) a constant uniform electric fieldEz to the cylindrical
channel. In response to theEz, the anions and cations, on the
average, move in opposite directions over a time period. In
the course of the motion of ions, a constant ion concentration

is maintained in the simulation cell by the axial periodic
boundary condition. This method resembles the artificial
color current method[39] used in the NEMD simulation of
the transport properties of non-Coulombic systems. In calcu-
lating the conductivity, the external electric field will gener-
ate Ohmic heat. This unavoidable feature will raise the tem-
perature of the system. In this work, we keep a constant
temperature by employing the method proposed by Evans
and Morris[40] as follows. Writing the induced axial current
density asJz, the non-Newtonian equations of motion are

d

dt
r i = pi/m s9d

and

d

dt
pi = Fi + qiEzêz − zSpi −

mVqiJz

qi
2N

êzD , s10d

wherer i, pi, andFi are the position, momentum, and force
vectors of theith particle, respectively,z is the Gaussian
thermostat parameter, andJz=foi=1

N qivi,zg /V, wherevi,z is the
axial velocity. Since the PM takes into consideration the size
disparity for cations and anions, we useJz

=foi=1
N+q+,iv+,i,zg /V++foi=1

N−q−,iv−,i,zg /V− for the current den-
sity of the PM. The detailed functional forms ofz as well as
that of T in the context of Gaussian constraint equation are
given in Tanget al. [25]. Finally, the conductivity can be
obtained as

s = lim
Ez→0

Jz/Ez. s11d

In accordance with the reduced units introduced above, the
current density, electric field strength, and electric conductiv-
ity are given by Jz

* =fsmldlm
6 d / se2elmdg1/2Jz, Ez

*

=sdlme/elmdEz, and s* =fsmldlm
4 elmd1/2/e2gs, respectively.

For the convenience of the reader, values of the reduced units
are collected in Table II also.

III. NUMERICAL RESULTS

We present numerical data for the self-diffusion coeffi-
cient and electric conductivity first for the continuum solvent
restrictive primitive model(CSRPM) and then for the con-
tinuum solvent primitive model(CSPM). The simulation re-
sults that emphasize the effects of molecular behavior of wa-
ter within the DSPM for the same equilibrium quantities are
also presented in this section.

TABLE II. Reduced units(see text) used in the simulation. The anions or cations are maintained at temperature 298.15 K in both the
RPM (first and second rows) and PM(third row). The t used in the simulation is 10−15 s.

RPM or PM mlm sa.u.d r* /r s10−29 m3d T* /T sK−1d t* /t s1010 s−1d D* /D s107 s m−2d s* /s s10−5 Vm)

sNa+,Na−d 23 2.0346 0.02324 45.662 2.93858 1.3866

sC+,Cl−d 35 11.4791 0.04952 14.244 2.97194 3.7041

sNa+,Cl−d 29 5.7961 0.04873 19.812 3.37010 2.1608
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A. Self-diffusion coefficient: Continuum solvent RPM vs
continuum solvent PM

We begin by pointing out a consequence arising from the
ion-wall interaction. For concreteness, we plot in Figs. 2 and
3 the radial density profilesr*srd=fNl+srd+Nl−srdgdll

3 /V of
the RPM sodium,l=Na, and chlorine,l=Cl, respectively.
The ionic concentrations defined bycl=Nl+/V=Nl−/V
=0.025M, 0.05M and 0.1M are considered for each of the
RPM systems. These figures reveal two interesting features.
The first feature is that the RPM sodiumr*srd confined to the
channel of radiusR=3dNa-Na at cNa=0.1M maximizesnear
the axis of the cylinder and decreases linearly with the radial
distance toward the cylindrical wall, whereas for the RPM
chlorine at the sameR and cCl, r*srd minimizesnear the
cylindrical center and increases linearly with the radial dis-

tance toward the wall. For a lowercl,0.1M, r*srd varies
almost uniformly with the radial distance across the channel.
The structure ofr*srd at cl=0.1M is consistent with our
previous RPM sodium simulation. To show this, we depict in
Fig. 4 ther*srd at cNa=0.1M obtained using a different set of
Lennard-Jones energy and distance parameters[25]. These
r*srd compare favorably with those given in Fig. 2. The sec-
ond feature has something to do with the effect of soft wall.
In our model this repulsive force gives rise to an excluded
volume, resulting in the physical volume available to cations
and anions different from the actual simulation cell. Such a
confinement has the consequence of restricting the centers of
ions to lie within a region with an effective radiusR8=R
−gdlm whereg is a “space-excluding” parameter. In view of
this space restriction the actual cell volume available to ions
is pR82H. pR82 is thus the cross-sectional area to be used
below for estimating the electric current density. In connec-
tion to this geometrical consideration, there is one further
remark that we should comment on. In the present MD simu-
lations, the smallest channel radius selected is 8.19 Å(equal
3dNaNa or 1.69dClCl). The nominal diameter of the cylinder
less of the excluded region(estimated in conjunction with
Table IV) is 10.38s11.76d Å for the Cl− sNa+d. This effec-
tive channel diameter is larger than any of the characteristic
minimum length scales(i.e., twicedlm given in Table I) so
that an ion(cation or anion) in our model electrolyte can
easily pass another(cation or anion) without overlap(similar
to the case of adsorbate Ne in Fig. 1(b) of Sholl and Fich-
thorn [6]). The implication is that neither sodium nor chlo-
rine ions will show the single-file diffusion.

We now discuss the EMD simulation forD. Before pre-
senting the results, we should make a remark on the numeri-
cal procedure used in the simulation. We run for 43107t*

after an equilibration run of 23106t* for the RPM cases
sNa+,Na−d and sCl+,Cl−d and also the PM casesNa+,Cl−d.
The total number of particles,N (anions plus cations), used is
228. Also, we obtainD in each EMD by averaging the mean-
square displacement run over at least 20 different time ori-

FIG. 2. Ionic radial density function rNa
* srd=fNNa+srd

+NNa−srdgdNa-Na
3 /V, r being the radial distance from the cylindrical

axis, for continuum solvent RPM:sNa+,Na−d evaluated by taking the
time average of 23107t* for R/dNa-Na=3 (dotted line), 4 (dot-
dashed line), 5 (long-dashed line), 10 (short-dashed line), and 15
(solid line) at cNa=0.1M (top), 0.05M (middle) and 0.025M (bot-
tom). The total number of anions and cations is 228 anddNa-Na

=2.73 Å.

FIG. 3. Same as Fig. 2, but for continuum solvent
RPM: sCl+,Cl−d.

FIG. 4. Ionic density function rNa
* srd=fNNa+srd

+NNa−srdgdNa-Na
3 /V, r being the radial distance from the cylindrical

axis, for continuum solvent RPM:sNa+,Na−d at cNa=0.1M obtained
as described in Refs.[25,38]. Notation used is as follows: solid line,
R=15dNa-Na; short-dashed line,R=10dNa-Na; long-dashed lineR
=5dNa-Na; dotted line,R=3dNa-Na.
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gins. We check carefully that this value forD is sufficient,
since averagingD greater than 20 different time origins gives
little change(see Figs. 5 and 6 each for a case study). Note
thatD for the RPM case was determined by taking the aver-
age values ofDl+ andDl− whereas for the PM caseDNa+
and DCl− were calculated separately. Figures 5(a) and 6(a)
depict the results ofD vs R for the RPM:sNa+,Na−d and
RPM: sCl+,Cl−d, respectively, and in the same figures we
compare separately withDNa+ [Fig. 5(b)] and DCl− [Fig.
6(b)] extracted from the PM:sNa+,Cl−d. As for r*srd, we con-
sider in each case three ionic concentrationscl (l=Na or
Cl): namely, 0.025M, 0.05M and 0.1M. There are three as-
pects of the simulations that merit emphasis. First, for the
RPM:sNa+,Na−d, the diffusion coefficient constant atcNa

=0.1M increases with increasing(or decreases with decreas-
ing) R, achieves the valueDNa<2.08310−6 m2/s at R
=27.3 Å ( 10dNa-Na) and approaches DNa<2.15
310−6 m2/s for R.27.3 Å. A spectacular behavior inDNa is
that it remains almost independent ofR at cNa=0.05M but at
cNa=0.025M, DNa increases anomalously with radial dis-
tanceR&13.65 Å Second, for the RPM:sCl+,Cl−d, the gen-
eral trend ofDCl with cCl as a function ofR mimics closely
the results for the RPM sodium. Here the change ofDCl vs R
behaves in the usual manner atcCl=0.1M and 0.05M; that is,
the magnitude ofDCl decreases with decreasingR. However,
at cCl=0.025M, an anomalous increase inDCl is again pre-

dicted for R,13.65 Å sR=2.81dCl-Cld. In other words, the
concentrationcCl at which D is independent ofR for the
RPM:sCl+,Cl−d is slightly lower, falling into a value that lies
somewhere between 0.025M and 0.05M. Third, DNa or DCl
vs R for PM: sNa+,Cl−d generally follows the same pattern as
the D data in the RPM, but the magnitude ofDNa sDCld
decreases(increases) with respect to the RPM.

The first aspect can be interpreted by resorting to two
factors: one factor is the electrostatic interactions among cat-
ions, anions and between the two species(energetic factor),
and the other factor is the interactions between the ions and
the confining wall(entropic factor). At cNa=0.1M, the former
is presumably dominant since at higher concentrations there
is a tendency for the ions within smallR to be more struc-
tured (Figs. 2 and 3) and the entropy is therefore decreased.
It appears that the ion-wall interactions atcNa=0.1M would
lead to more structuring and this kind of ordering would lead
to a decrease inD asR is reduced. AscNa is reduced, we find
the Coulombic interactions among cations, anions as well as
between them weakened; the repulsive ion-wall interactions,
on the other hand, begin to play a more active role in con-
tributing to the Coulombic forces felt by ions(Table III).
This happens in the following manner. As anith cation or
anion atr i moves into the regionr i ù rminslwd [defined by
Eq. (6)], the ion-wall force operates and moves it radially
inward to a new position. The tagged ion atr i thus interacts

FIG. 5. (a) Diffusion coefficient constantD vs pore radiusR at
cNa=0.1M (bottom, solid squares), 0.05M (middle, solid circles),
and 0.025M (top, solid up triangles) for continuum solvent
RPM: sNa+,Na−d. D is the average of DNa+ and DNa−. The D for
taking 30 origins is shown as the down triangle simulated forR
=8.19 Å at cNa=0.025M. (b) Diffusion coefficient constantD vs
pore radiusR at cNa=NNa+/V=0.1M (bottom, solid squares), 0.05M
(middle, solid circles), and 0.025M (top, solid up triangles) for cat-
ions sodium in continuum solvent PM:sNa+,Cl−d. Note that we have
tested the simulation result atcNa=0.1M using the massm
=0.058 kg/mol (solid square) and m=0.029 kg/mol (down tri-
angle) for the caseR=13.65 Å.

FIG. 6. (a) Diffusion coefficient constantD vs pore radiusR at
cCl=0.1M (bottom, solid squares), 0.05M (middle, solid circles),
and 0.025M (top, solid up triangles) for continuum solvent
RPM:sCl+,Cl−d. D is the average ofDCl+ andDCl−. TheD for taking
30 origins is shown as the down triangle simulated atcCl

=0.025M and forR=8.19 Å.(b) Diffusion coefficient constantD vs
pore radiusR at cCl=NCl−/V=0.1M (bottom, solid squares), 0.05M
(middle, solid circles), and 0.025M (top, solid up triangles) for an-
ions chlorine in continuum solvent PM:sNa+,Cl−d. Note that we
have tested the simulation result atcCl=0.1M using the massm
=0.058 kg/mol(solid square) and 0.029 kg/mol(down triangle)
for the caseR=13.65 Å.
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electrostatically with all other ions preferentially those with
an opposite polarity. The resulting configuration(an entropic
factor) from which the system evolves subsequently must be
different from the bulk environment where the influence of
confined geometry is absent. Our results of simulations show
that such ion-wall interactions increase with decreasingR for
all of cl (see Table III for numerical evidence). The conse-
quence is that the entropy of the system of cations and anions
is enhanced for a smallerR. This scenario can be seen from
Figs. 2 and 3 wherer*srd variesuniformly for cl=0.025M
and nonuniformly(or linearly) for cl=0.1M. The electro-
static interaction depends on the average distance between
ions. For a smaller pore radius, the smaller cross-sectional
area leads to a decrease in density in the axial dimension and
thus increases the ion-ion distance. This, in general, would
lower the electrostatic interaction and is more pronounced at
a lower concentration. In fact, the present simulation predicts
that Dl increases anomalously forcNa,0.05M and
R,13.65 Å in the RPM:sNa+,Na−d or cCl,0.05M and R
&19.44 Å in the RPM:sCl+,Cl−d; these behaviors for Dl,
shown in Figs. 7(a) and 8(a) for the RPM and in Figs. 7(b)
and 8(b) for the PM, clearly manifest the response of ions in
confined space. Coming to the second aspect, this can be
explained by the inertia effect and the relatively larger physi-
cal size of chlorine. Both properties slow down the motion,
but they do not change the basic(Coulomb) interactions
among anions, cations, and between them and the wall. In
view of the normal behavior ofDl at cl=0.1M where it
decreaseswith reducing R and the abnormal behavior at
cl,0.05M whereDl increaseswith reducing R, we would
anticipate the existence of a thresholdcl at which concentra-
tion Dl is independent ofR. When this happens the electro-
static interaction(energetic factor) will just balance the ion-
wall interaction(entropic factor). Finally, the third aspect can

be understood by noticing that the larger anions Cl− in the
PM have less room to wander about compared with the
smaller anions Na− in the RPM. The opposite situation oc-
curs to cations in the PM(compared with the RPM case)
where, now, more space is available to Na+ ions instead of
Cl+ cations in the RPM. The entropic factor is therefore one
of the reasons for the decrement(increment) in magnitude of
DNa sDCld. The ionic radial density functions given in Figs.
9(a) and 9(b), respectively, for Na+ and Cl− in the model
electrolyte CSPM further illustrate our proposition.

TABLE III. Number of cations,Nl+ plus anions,Nl− (l=Na or
Cl), out of a total number of 228 ions that fall into the ion-wall
interaction regionfr ù rminsl ,wdg as a function of the cylindrical
radius R for cl=0.1M, 0.05M, and 0.025M. The rminsl ,wd=R
−1.006dNa-Na (or R−1.023dCl-Cl) is the minimum distance defined
by Eq. (6). The ion-wall interacting number is calculated by the
formula: 228Srùrminsl,wd r*srdDr i /Si r*srdDr i where r*srd=fNl

+srd+Nl−srdgdll
3 /V is the reduced radial density ofsNl++Nl−d

ions.

RPM R sÅd /cl 0.1M 0.05M 0.025M

8.19 15 15 15

10.92 10 10 10

sNa+,Na−d 13.65 8 8 8

23.7 4 4 4

40.95 2 2 2

8.19 53 54 52

10.92 31 30 30

sCl+,Cl−d 13.65 21 21 21

23.7 9 9 9

40.95 6 6 6

FIG. 7. (a) Diffusion coefficient constantD vs concentrationcNa

for continuum solvent RPM:sNa+,Na−d. Notation used is as follows:
down triangle,R=40.95 Å; up triangle,R=27.3 Å; diamond,R
=13.65 Å; square,R=10.92 Å; circle,R=8.19 Å. Note that the up-
per figure is forcNa=0.025M enlarged for clarity and separated
from cases forcNa=0.05M and 0.1M given in the lower figure.(b)
Same as(a), but for Na+ in continuum solvent PM:sNa+,Cl−d.
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B. Self-diffusion coefficient: Discrete solvent primitive model

Before describing the general characteristics of the
DSPM, it may be helpful to recall a relevant work of
Lynden-Bell and Rasaiah[20] who reported a similar MD
simulation for a system comprising of one solute embedded
in point-charge SPC/E solvent molecules. Preparing the
single ion(Na+ or Cl−) and the water molecules in an infi-
nitely long cylindrical pore with smooth repulsive walls,
Lynden-Bell and Rasaiah studied the radial density distribu-
tion of ion (Na+ or Cl−) and solvent molecules as well as the
diffusion coefficient of the isolated ion as a function of pore
radius. They noticed that the smaller Na+ ion tends to occupy
the center of the cylinder while the larger Cl− ion is more
likely found near the wall. Lynden-Bell and Rasaiah attrib-
uted such a difference in the distributions of positive and

negative ions to the entropic factor. Since the potential pa-
rameters used here(Table I) and by them are essentially the
same(except forsCl-O=3.785 Å, a different form of the ion-
wall repulsive potential and the treatment of water molecules
as point charges), the general behavior presented there for
the single-ion properties is a useful contrast to the collective
diffusion given here, at least qualitatively.

We now proceed to study the general properties of the
DSPM and compare it with the CSPM. Let us first look at the
density distribution of ions. For this purpose, we perform a
simulation for the DSPM for a total numbersNa++Cl−d of 76
ions dispersed in 29 666 water molecules modeled in this
work by neutral soft cores. The solvent volume fraction is
estimated to behs=0.2. Figures 10(a)–10(c) display the ra-
dial density profiles of ions prepared at the concentration
cl=0.025M for the cylindrical radii R=8.19, 13.65, and
27.3 Å, respectively. In contrast to the density profiles of

FIG. 8. (a) Same as Fig. 7(a), but for continuum solvent
RPM:sCl+,Cl−d. (b) Same as Fig. 7(a), but for Cl− in continuum
solvent PM:sNa+,Cl−d.

FIG. 9. (a) Ionic density function for cationsrNa
* srd

=NNa+srddNa-Na
3 /V, r being the radial distance from the cylindrical

axis, for continuum solvent PM:sNa+,Cl−d calculated by taking the
time average of 23107t* for R/dNa-Na=3 (dotted line), 4 (dot-
dashed line), 5 (long-dashed line), 10 (short-dashed line), and 15
(solid line) at cNa=0.1M (top), 0.05M (middle), and 0.025M (bot-
tom). The total number of anions and cations is 228 anddNa-Cl

=3.87 Å (b) Same as(a), but for anions.
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Lynden-Bell and Rasaiah(Fig. 9 in Ref. [20]), the radial
density distribution functions of Na+ and Cl− are reversed
with the ions of Na+ sCl−d distributed closer(farther) from
the pore center while those of water molecules prefer to stay
near the wall. Note that the number of water molecules used
in the present simulation is significantly larger. In compari-
son with the CSPM, the DSPM radial density functions ex-
hibit structures that are entirely different. The most obvious
disparity is the accumulation of ions in the vicinity of the
wall. For the DSPM, the density distribution functions of
ions display two clear peaks which are located, for pore ra-
diusR=8.19 Å, atrNa+ <5.11 and 1.66 Å for cations and at
rCl− <4.30 and 0.89 Å for anions; forR=13.65 Å, atrNa+
<10.53 and 7.16 Å andrCl− <9.71 and 6.97 Å; and forR
=27.3 Å, at rNa+ <24.2 and 20.8 Å andrCl− <23.4 and
20.4 Å, and they oscillate into the center of the cylinder. The
oscillatory profile is relatively stronger in the region near the
cylindrical axis for R=8.19 Å compared with those forR
=13.65 and 27.3 Å. In fact, ther*srd in the two larger pore
radii approach the cylindrical axis with nearly constant den-
sity. The regions where the ions are excluded by the ion-wall
interaction are given in Table IV in which are included for
comparison the corresponding data in the CSPM. Also, it is
seen that ther*srd of solvent particles peaks at positions
rwater<4.91, 10.37, and 24.0 Å, respectively, for pore radii
R=8.19, 13.65, and 27.3 Å, closer to the wall, but lies gen-
erally in between thoser*srd of cations and anions. This
behavior differs from the simulatedr*srd using the DSRPM
[13] and may be attributed to the more realistic DSPM con-
sidered in the present simulation work and to the fact that the
concentration of electrolyte is lower than that of Tanget al.
[13] scl=0.1Md. Now, according to the works of Tanget al.
[13] and others[41–43] a localized distribution of ions
would lead to a lower value of the local diffusion coefficient,
and naturally, the pore-averagedDl will also be lower. For
instance, our simulatedDl data at channel radiusR
=13.65 Å for the DSPM yieldDNa+ =0.0737±0.005 26
310−6 m2/s and DCl− =0.049 46±0.003 13310−6 m2/s;
these values are indeed much smaller in magnitude com-
pared with those of the CSPM(DNa+ =5.107 12±0.470 99
310−6 m2/s andDCl− =3.445 07±0.4308310−6 m2/s). The
decrease inDl is the result of the effect of discrete solvent
molecules.

TABLE IV. Comparison of the excluded space induced by ion-
wall interaction for the DSPM(upper two rows) and CSPM) (lower
two rows) for Na+ and Cl− at concentration 0.025M for different
pore radii. Numerical values given are distances(in units of Å)
measured from the wall.

R sÅd
Ion 8.19 13.65 27.3

Na+ 2.31 2.25 2.20

Cl− 3.00 2.95 2.90

Na+ 2.35 2.35 2.30

Cl− 3.04 3.05 3.00

FIG. 10. (a) Ionic radial density functions rNa
*

srd=NNa+srddNa-Na
3 /V, rCl

* srd=NCl−srddCl-Cl
3 /V, and rs

*srd
=NssrddNa-Cl

3 /V, r being the radial distance from the cylindrical
axis, for Na+ (solid line) in discrete solvent PM:sNa+,Cl−d, Cl−

(long-dashed line) in discrete solvent PM:sNa+,Cl−d, and water
(short-dashed line), respectively. The number of ions used is
NNa+srd+NCl−srd=76 for ions andNs=29 666 for solvent. The dis-
crete solvent volume fraction is estimated to behs=0.2. The simu-
lation was carried out with 13106t* equilibration time and run
further for 13107t* taking an average of five time origins. The
concentration of ions and the pore radiusR are 0.025M and 8.19 Å,
respectively.(b) Same as(a), but for radiusR=13.65 Å. (c) Same
as (a), but for radiusR=27.3 Å.

ANOMALOUS DIFFUSIVITY AND ELECTRIC… PHYSICAL REVIEW E 69, 051203(2004)

051203-9



C. Conductivity: Continuum solvent primitive model

In view of the anomalous behavior ofD at cl=0.025M,
we now present our NEMD results fors* in the CSPM.
Figures 11(a)–11(c) display plots ofsNa

* + in electrolyte NaCl
sCl

* − in electrolyte NaCl, and totals* =sNa+
* +sCl−

* of electro-
lyte NaCl at cl=0.025M, respectively. Separately, we in-
cluded in each plot(a) sl

* or s* vs Ez
* simulated for different

R and(b) sl
* or s* vs R for the equilibrium case obtained by

extrapolatingEz
* →0. As can be seen from these figures, the

linear response behavior is satisfied generally in all cases
considered here. Let us summarize three specific features.
First, thesNa+

* and sCl−
* at the large pore radiusR=27.3 Å

have nearly constant magnitudes or weakly increase with in-
creasingEz

* resulting in the totals* increases with increasing
Ez

* . As R decreases to 13.65 Å,s* of either cations or anions
is in opposition to the change inEz

* . Thus thesNa+
* , sCl−

* and
s* all decrease with increasingEz

* as the pore radius becomes
small (in the present caseR&27.3 Å). This trend differs
from the simulation work of Tanget al. [25] at cNa=0.1M
where there they predicted the RPM:sNa+,Na−d s* increases
with increasingEz

* at R=10dNa-Na and 5dNa-Na, but reversing
behavior is observed atR=3dNa-Na. Second, the simulated
sNa+

* , sCl−
* and s* all show an anomalous increment as the

channel radius is decreased. Third, for although the electric
conductivity of sodium ions atR=27.3ssNa+

* =0.008 36d and
13.65 Å ssNa+

* =0.019d is larger thansCl−
* at the sameR

(sCl−
* =0.006 22 and 0.014 83, respectively), the electric con-

ductivity sCl−
* =0.026 76<sNa+

* =0.026 82 is observed atR
=8.19 Å. The first two features qualitatively correlate with
the results ofD vs R given in Figs. 5 and 6. Quantitatively,
the trend is similar to our preceding work for RPM results at
cl=0.1M (Fig. 7 in Ref.[13]) in that it is slightly different
from the Dl of ions obtained within the context of the
Nernst-Einstein equation. This would point to the general
validity of the Nernst-Einstein equation for confined electro-
lytes such as the CSPM reported here. The third feature,
however, needs further explanation. Returning to Figs. 9(a)
and 9(b) for the radial density functions, we observe an un-
usual feature. Atcl=0.025M, r*srd is uniform as a function
of r and its magnitude increases with decreasingR. Both
cations and anions separately follow this trend. There is,
however, one basic difference. AtR=8.19 Å, rNa+

* srd
<0.001 65 and is much less thanrCl−

* srd<0.002 25 at the
sameR. The difference is certainly larger compared with
those atR=13.65 frNa+

* srd<0.001 25,rCl−
* srd<0.0014g and

27.3 Å frNa+
* srd<0.001 05,rCl−

* srd<0.0011g. In other words,
the average cross-sectional density of anions atR=8.19 Å is
higher (see also Table III) than that of cations. As a conse-
quence, the average axial density of anions is generally
lower, implying that the anion-anion distance in the axial
direction, on the average, will be larger. It is therefore quite
plausible thatsCl−

* at a smallerR can achieve a value com-
parable tosNa+

* . In our preceding work[13], the NEMD
simulation for severely confined systems withR=1.5 and
2dNa-Na showed thats* decreases rapidly to zero. We believe
that a similar phenomenon will possibly be observed also for
the CSPM.

FIG. 11. (a) Reduced electric conductivitys* vs applied uni-
form electric fieldEz

* (upper figure) for cations Na+ in continuum
solvent PM:sNa+,Cl−d simulated atcNa=0.025M for channel radii
R=8.19(squares), 13.65(circles), and 27.3(triangles) Å. The lower
figure depictings* vs R sÅd is obtained by extrapolatingEz

* →0
corresponding to the equilibrium situation.(b) Same as(a), but for
anions Cl− in continuum solvent PM:sNa+,Cl−d. (c) Same as(a) but
for the Na++Cl− system in continuum solvent PM:sNa+,Cl−d.
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IV. SUMMARY AND CONCLUSION

The EMD and NEMD simulations were performed to
study the equilibrium and nonequilibrium properties of a
model electrolyte NaCl which is prepared at three electro-
lytic concentrations—namely, cl=0.1M, 0.05M, and
0.025M—and is confined to an infinitely long, uncharged
cylindrical pore. For the EMD simulations, we compare the
continuum solvent RPM and PM for the diffusion coefficient
as a function of the radius of the cylinder at each ionic con-
centration. Our simulation results show that it decreases with
reducingR at cl=0.1M, shows a weak dependence onR at
cl=0.05M, and ascl falls down to 0.025M, D decreases
initially with R (from 15dlm to approximately 5dNa-Na or
2.81dCl-Cl) and then increases anomalously with further re-
ducing R. Both continuum solvent RPM and PM display
these interesting features. The mechanism behind the anoma-
lous change ofD with R for different cl can be understood
qualitatively in this work by looking closely at the Coulom-
bic interactions(energetic factor) between anions and cations
and at the role played by the wall in pushing away those ions
that “invade” the repulsive regionr ù rlwsmind, thereby
changing the ionic configuration(entropic factor), which in
turn alters the electrostatic coupling among ions. For the

NEMD simulations, the simulated electric conductivity at the
samecl=0.025M for different R follows the same anoma-
lous pattern asD vs R. In contrast to the CSPM, the diffusion
coefficient for the DSPM under the condition of sameR and
cl behaves differently due to increased interactions between
ions and solvent molecules. Here, in addition to ions, the
solvent molecules interact also with the wall. Since the num-
ber of water molecules is significant, an immediate conse-
quence is that the solvent-wall interactions may easily over
whelm the ion-wall interactions. The behavior ofD is there-
fore very much influenced by interactions between the ions
and the solvent molecules. Normal diffusive motion for the
anions and the cations with decreasingR at differentcl is
thus to be anticipated.
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